
 
In simple terms, a group is a set equipped with an operation that combines two elements in the group to form 
another element, also in the group. This operation is also associative and there exists an identity and inverse 
element. The main application of groups is for modelling the symmetry of objects, and so group theory can be 
applied to many areas of geometry and physics.  
 
The group axioms 
Recalling set theory from GCSE Maths, a set is a collection of distinct objects. Writing 𝑎𝑎 ∈ 𝑆𝑆 shows that the element 
𝑎𝑎 is a member of the set 𝑆𝑆. 

• A binary operation on a set is a calculation that combines two elements of the set to output another element 
of the same set. For example, the addition operation in the set of integers is a binary operation. It’s important 
to note that, unlike addition or multiplication of integers, the order the elements are combined often matters. 

• An identity element of a set 𝑆𝑆 under a binary operation ∗ is an element 𝑒𝑒 ∈ 𝑆𝑆 such that for any 𝑎𝑎 ∈ 𝑆𝑆, 𝑎𝑎 ∗ 𝑒𝑒 =
𝑒𝑒 ∗ 𝑎𝑎 = 𝑎𝑎. For example, the identity element of the set of the integers with the binary operation of addition is 
1. The identity element of a set 𝑆𝑆 under a binary operation must be unique, which can be proven by 
contradiction 

• An inverse element for any element 𝑎𝑎 ∈ 𝑆𝑆 under a binary operation ∗ is an element 𝑏𝑏 ∈ 𝑆𝑆 such that 
 𝑎𝑎 ∗ 𝑏𝑏 = 𝑏𝑏 ∗ 𝑎𝑎 = 𝑒𝑒, where 𝑒𝑒 ∈ 𝑆𝑆 is the identity element.  

• A binary operation ∗ on a set 𝑆𝑆 is associative if, for any 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ∈ 𝑆𝑆, 𝑎𝑎 ∗ (𝑏𝑏 ∗ 𝑐𝑐) = (𝑎𝑎 ∗ 𝑏𝑏) ∗ 𝑐𝑐 
 

Example 1: The binary operation ∗ on the set of real numbers is defined as 𝑎𝑎 ∗ 𝑏𝑏 = 𝑎𝑎 − 𝑏𝑏 + 𝑎𝑎𝑎𝑎. 
Find the identity element. The real number 𝑚𝑚 has inverse 𝑚𝑚−1 that satisfies the property 𝑚𝑚 ∗𝑚𝑚−1 = 𝑒𝑒, express 𝑚𝑚−1 in 
terms of 𝑚𝑚. 

Set up an equation using the definition of the identity 
element. 

𝑎𝑎 ∗ 𝑒𝑒 = 𝑎𝑎 
𝑎𝑎 − 𝑒𝑒 + 𝑎𝑎𝑎𝑎 = 𝑎𝑎 

Solve the equation. 

−𝑒𝑒 + 𝑎𝑎𝑎𝑎 = 0 
𝑒𝑒(𝑎𝑎 − 1) = 0 

𝑒𝑒 = 0 
So, for this binary operation, 𝑒𝑒 = 0 is the identity 
element 

Set up an equation for 𝑚𝑚 using the identity element we 
have found. 

𝑚𝑚 ∗𝑚𝑚−1 = 0 
𝑚𝑚−𝑚𝑚−1 + 𝑚𝑚𝑚𝑚−1 = 0 

Solve the equation. 
𝑚𝑚 + 𝑚𝑚−1(𝑚𝑚− 1) = 0 

𝑚𝑚−1 =
−𝑚𝑚

(𝑚𝑚 − 1) ,𝑚𝑚 ≠ 1 

 
The properties of binary operations can be used to define a group: 

• If 𝐺𝐺 is a set and ∗ is a binary operation defined on 𝐺𝐺, then (𝐺𝐺,∗) is a group if the following four axioms hold: 
- The set is closed: For all 𝑎𝑎,𝑏𝑏 ∈ 𝐺𝐺,𝑎𝑎 ∗ 𝑏𝑏 ∈ 𝐺𝐺 
- There exists an identity element in the group: There exists 𝑒𝑒 ∈ 𝐺𝐺, such that for all 𝑎𝑎 ∈ 𝐺𝐺, 
 𝑎𝑎 ∗ 𝑒𝑒 = 𝑒𝑒 ∗ 𝑎𝑎 = 𝑎𝑎 
- For each element 𝑎𝑎 ∈ 𝐺𝐺, thee exists an inverse 𝑎𝑎−1 ∈ 𝐺𝐺 such that 𝑎𝑎 ∗ 𝑎𝑎−1 = 𝑎𝑎−1 ∗ 𝑎𝑎 = 𝑒𝑒 
- Associativity: for all 𝑎𝑎,𝑏𝑏, 𝑐𝑐 ∈ 𝐺𝐺,𝑎𝑎 ∗ (𝑏𝑏 ∗ 𝑐𝑐) = (𝑎𝑎 ∗ 𝑏𝑏) ∗ 𝑐𝑐 

The group is the set together with a binary operation that satisfies these axioms- the set on its own is not a group 
 
Cayley tables and finite groups 
All of the groups we’ve considered up until this point have an infinite number of elements. A finite group, as the name 
suggests, contains only a finite number of elements in its underlying set. Finite groups can be represented in a Cayley table, 
which shows all possible elements of the group. 
 
Example 2: Form the Cayley table for the set {0,1,2,3} with the binary operation of addition modulo 4. Find the identity 
element and the inverse of 3 

At the intersection of each number, 
compute the two numbers added together 
modulo 4. Each entry should be a member 
of the underlying set. 

+ 0 1 2 3 

0 0 1 2 3 

1 1 2 3 0 

2 2 3 0 1 

3 3 0 1 2 

 
 

By definition, the identity element is the 
element 𝑒𝑒 such that 𝑒𝑒 ∗ 𝑎𝑎 = 𝑎𝑎. The identity element is 0 

The inverse of 3 is the element that when 
added modulo 4, gives the identity 
element. 

3 + 1 = 0 (mod 4) 
So, the inverse of 3 is 1. 

 
 

 

Cayley tables have the following properties: 
• All entries must be members of the group 
• Every entry appears exactly once in each row and each column, including the identity element 
• The identity elements are symmetric across the leading diagonal 

Cayley tables can also be used to prove that a group satisfies the group axioms: 
• The table must contain the identity element, thus the identity element exists 
• As the identity element is included in every row and column, every element has an inverse 

 
The binary operations are not necessarily familiar arithmetic operations, the operation can also define different 
permutations of objects. Take 3 counters of different colours in the order Red, Green, Blue in positions 1,2,3. We can 
define 6 operations for the 6 permutations (n objects in a row have n! permutations), with each operation forming a 
different permutation from the identity, or the original set up of the counters. A set 𝑆𝑆 of the 6 permutations can be defined, 
along with an operation ∗, which can be defined as the composition of the different operations. As our set is of the 6 
different permutations (you can check that there are 6 permutations by calculating 3!). Normally, the composition of 
permutations works in the same way as functions, so 𝑟𝑟 ∗ 𝑠𝑠 means do 𝑠𝑠 then 𝑟𝑟. 
 
This group is known as the symmetric group on 3 elements, denoted 𝑆𝑆3. 

• The symmetric group on 𝑛𝑛 elements, denoted 𝑆𝑆𝑛𝑛, is defined as the group of all possible permutations on 𝑛𝑛 
objects (i.e 𝑛𝑛! Permutations in total). Two-row notation can be used to write permutations more easily, for 
example, the operation that we will denote 𝑝𝑝 that takes the counters from order RGB to BGR, in other words 
swapping positions 1 and 3 can be written as: 

𝑝𝑝 = �1 2 3
3 2 1� 

Two-row notation can be used to show permutations for larger objects, find compositions and find inverses. 
 

Example 3: Given the permutations on 4 objects 𝛼𝛼 = �1 2 3
3 2 4  41� and 𝛽𝛽 = �1 2 3 4

1 3 4 2
�, find the composition 𝛼𝛼 ∗ 𝛽𝛽 

and the inverse of 𝛼𝛼 
Write out the composition 𝛼𝛼 ∗ 𝛽𝛽 without simplifying. 𝛼𝛼 ∗ 𝛽𝛽 = �1 2 3

3 2 4  41� ∗ �
1 2 3 4
1 3 4 2� 

As stated previously, compositions work from the inside 
out- 𝛽𝛽 is applied before 𝛼𝛼.  
Looking at the element in position 1, when 𝛽𝛽 is applied, 
it stays in position 1. When 𝛼𝛼 is applied to the element 
in position 1, it goes to position 3, so the end result is 
moving the element from position 1 to position 3. 
Looking at the element in position 2, when 𝛽𝛽 is applied, 
it moves to position 3. We then apply 𝛼𝛼 and the element 
from position 3 goes to position 4. The end result of the 
composition moves the element that was in position 2 
into position 4. Continuing the same logic for positions 3 
and 4, the two-row notation for the total composition 
can be written as followed. 
 

𝛼𝛼 ∗ 𝛽𝛽 = �1 2 3 4
3 4 1 2� 

To find the inverse, we must find the permutation that 
maps the objects back to their original places. For 𝛼𝛼, the 
object in position 1 is mapped to position 3, so for 
𝛼𝛼−1, position 3 must be mapped back to position 1.  

𝛼𝛼−1 = �1 2 3 4
4 2 1 3� 

 
 
Groups of symmetries 
Finite groups can be constructed by considering the symmetries of shapes- consider the ways that an equilateral triangle 
can be mapped onto itself, with the vertex at the top being position 1, then labelling anticlockwise 
There are 3 rotational symmetries: 

• Rotating clockwise 2𝜋𝜋
3

, denoted 𝑅𝑅 = �1 2 3
3 2 1� 

• Rotating clockwise 4𝜋𝜋
3

, denoted 𝑆𝑆 = �1 2 3
2 3 1� 

• Rotating clockwise 2𝜋𝜋. This is the same as not rotating and is the identity, 

Denoted 𝐼𝐼 = �1 2 3
1 2 3� 

There are also 3 reflections: 
• Reflection in the line of symmetry passing through position 1,  

Denoted 𝐿𝐿 = �1 2 3
1 3 2� 

• Reflection in the line of symmetry passing through position 2, denoted 𝑀𝑀 = �1 2 3
3 2 1� 

• Reflection in the line of symmetry passing through position 3, denoted 𝑁𝑁 = �1 2 3
2 1 3� 

 
The group of symmetries of an 𝑛𝑛-sided regular polygon is called a dihedral group and is denoted 𝐷𝐷2𝑛𝑛- the group contains 
2𝑛𝑛 elements and the process shown above for the equilateral triangle can be extended for any regular polygon 
 
 
 
 
 

Cyclic groups 
A cyclic group is a group in which every element can be found by repeatedly applying the group operation with a particular 
element, called the group generator. If we denote the group generator as 𝑎𝑎, every element can be written in the form 
𝑎𝑎𝑘𝑘, where 𝑘𝑘 is a positive integer. For example, the group of positive integers with the operation addition is cyclic, as 
repeated addition to generates every element of the group. 
 
Example 4: {0,1,2,3,4,5} forms a group under addition modulo 6, show that 5 is a generator of the group and thus that 
the group is cyclic 

Write out the elements of the group in terms of 5𝑘𝑘, 
remember that 5𝑘𝑘 means apply the group operation 𝑘𝑘 
times, so it is equivalent to 5 + 5 +⋯+ 5 𝑘𝑘 times – not 
5 raised to the power k. 

5 = 5( mod 6) 
52 = 4(mod 6) 
53 = 3(mod 6) 
54 = 2(mod 6) 
55 = 1(mod 6) 
56 = 0(mod 6) 

Explain why the group is cyclic, it is important to note 
that there can be more than one generator of a group. 

The group is cyclic because each element can be 
generated from one element of the group 

Order and subgroups 
Order can be applied to both groups and elements 

• The order of a finite group 𝐺𝐺, denoted |𝐺𝐺|, is the number of distinct elements 
• The order of a finite order element 𝑎𝑎 in a group (𝐺𝐺,∗) with identity 𝑒𝑒 is the smallest positive integer 𝑘𝑘 such 

that 𝑎𝑎𝑘𝑘 = 𝑒𝑒. An element has infinite order if 𝑎𝑎𝑚𝑚 ≠ 𝑒𝑒 for every positive integer 𝑚𝑚. 
 
For an element 𝑎𝑎 a group (𝐺𝐺,∗), if 𝑎𝑎 has finite order 𝑛𝑛, then 𝑎𝑎𝑚𝑚 = 𝑒𝑒 if and only if 𝑛𝑛|𝑚𝑚. If 𝑎𝑎 has infinite order, then 
 𝑥𝑥 ≠ 𝑦𝑦 ≠⇒ 𝑎𝑎𝑥𝑥 ≠ 𝑎𝑎𝑦𝑦. If 𝑎𝑎𝑥𝑥 = 𝑎𝑎𝑦𝑦 with 𝑥𝑥 ≠ 𝑦𝑦, then 𝑎𝑎 must have finite order 
 
If a subset of the underlying set of a group also satisfies the group axioms with the same operation, then it is denoted a 
subgroup 

• For 𝐻𝐻, a subgroup of G, if 𝐻𝐻 ⊂ 𝐺𝐺, then 𝐻𝐻 is a proper subgroup of 𝐺𝐺 
• If 𝐻𝐻 ⊆ 𝐺𝐺, then H is a subgroup of 𝐺𝐺 

Every group has two subgroups, itself and ({𝑒𝑒},∗), which is called the trivial subgroup. 
If 𝐻𝐻 is a finite, non-empty subset of a group 𝐺𝐺 and 𝐻𝐻 is closed under the operation of 𝐺𝐺, then 𝐻𝐻 is a subgroup. 

• If 𝐺𝐺 is a finite group, then any element 𝑎𝑎 ∈ 𝐺𝐺 generates a subgroup of G, denoted 〈𝑎𝑎⟩ 
• Lagrange’s theorem states that if 𝐻𝐻 is a subgroup of a finite group 𝐺𝐺, then |𝐻𝐻| divides |𝐺𝐺|. 

Isomorphisms (A-level only) 
Groups with completely definitions can sometimes behave similarly. If two groups have the same order, and the 
elements combine using the group operation in exactly the same way, then the two groups are isomorphic. To show this, 
a one-to-one mapping function can be set up between the two groups 

• Two groups (𝐺𝐺,∗) and (𝐻𝐻,∘) are isomorphic, denoted 𝐺𝐺 ≅ 𝐻𝐻 if there exists a mapping 𝑓𝑓:𝐺𝐺 → 𝐻𝐻 such that: 
- f maps all of the elements of 𝐺𝐺 on to all of the elements of 𝐻𝐻 
- f is on-to-one 
- f preserves the structure: 𝑓𝑓(𝑎𝑎 ∗ 𝑏𝑏) = 𝑓𝑓(𝑎𝑎) ∘ 𝑓𝑓(𝑏𝑏) [note the different operations on either side] 

• Group isomorphisms preserve identities, inverses, the order of elements, the order of groups and preserves 
subgroups. 

 
Exercise 5: The set 𝐺𝐺 = {1,−1, 𝑖𝑖,−𝑖𝑖} forms a group under complex multiplication and the set 𝐻𝐻 = {0, 1, 2, 3} forms a 
group under addition modulo 4. Define an isomorphism and show that 𝐺𝐺 ≅ 𝐻𝐻 

It will be helpful to draw Cayley tables for each group in 
order to see how the elements interact. 

x 1 -1 i -i 

1 1 -1 i -i 

-1 -1 1 -i i 

i i -i -1 1 

-i -i i 1 -1 
 

 

+ 0 1 2 3 

0 0 1 2 3 

1 1 2 3 0 

2 2 3 0 1 

3 3 0 1 2 
 

Map the identity elements. 
It is clear to see that in 𝐺𝐺, 1 is the identity element, and 
in 𝐻𝐻, 0 is the identity element, so these can be mapped 
to each other 

For the other elements, it is useful to consider the order. 

In 𝐺𝐺: 
-1 has order 2, as −1 × −1 = 1 
𝑖𝑖 has order 4, as 𝑖𝑖 × 𝑖𝑖 × 𝑖𝑖 × 𝑖𝑖 = 1 
−𝑖𝑖 has order 4 
In 𝐻𝐻: 
1 has order 4 as 1 + 1 + 1 + 1 = 0 
2 has order 2 as 2 + 2 = 0 
3 has order 4 as 3 + 3 + 3 + 3 = 0 

As we can map elements of the same order to elements of the same order one to one, then the structure of the 
group is preserved and 𝐺𝐺 ≅ 𝐻𝐻. 
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